· 1117

ASSESSMENT OF AIR QUALITY IMPACT OF A PROPOSED SECTION OF INTERSTATE 66

by

W. A. Carpenter Highway Research Engineer

and

G. G. Clemena Highway Materials Research Analyst

Virginia Highway Research Council (A Cooperative Organization Sponsored Jointly by the Virginia Department of Highways and the University of Virginia)

Charlottesville, Virginia

March 1972 VHRC 71-R24

1118

ASSESSMENT OF AIR QUALITY IMPACT OF A PROPOSED SECTION OF INTERSTATE 66

by

W. A. Carpenter Highway Research Engineer

and

G. G. Clemena Highway Materials Research Analyst

INTRODUCTION

This report presents an assessment of the impact of a proposed section of Interstate 66 on the quality of the air in the immediate area of the project and in adjacent areas. The proposed project begins with an extension of existing I-66 at the interchange on I-495 in Fairfax County, passes through Arlington County, and terminates near the Key Bridge.

Because of the limited time available for the assessment, consideration was given to only the most abundant gaseous pollutant emitted by motor vehicles, namely, carbon monoxide (CO).

The assessment includes: (1) a mesoscale analysis of the effect of the proposed highway on the total CO emissions for the area, and (2) a microscale or corridor analysis to estimate the CO concentrations to be expected in some immediate areas of the project after its completion.

TRAFFIC DATA

The traffic data used in the analyses were furnished by the Metropolitan Transportation Planning Division of the Virginia Department of Highways. The data were for three years, namely: (1) 1975, the estimated date of completion (EDC); (2) 1985, ten years after the EDC; and (3) 1995, twenty years after the EDC. The data for 1975 were taken as 96% of those for 1985.

The types of traffic data used were: (1) peak hour and off-peak hour conditions in terms of vehicles per hour (vph), average route speed and traffic mix; and (2) daily vehicle miles traveled (DVMT) and traffic mix. Data were furnished for both the proposed I-66 and the existing major

roads in the area. For the latter, two possibilities were presented: (1) an estimate assuming I-66 is not built, and (2) an estimate assuming it is.

No data were available for urban mass transit or land use regulations in the area.

The traffic data are summarized in Tables I and II. (All tables and figures are appended.)

EMISSION FACTORS (EF)

The vehicular emission factors for carbon monoxide used in the analyses were developed by the California Division of Highways,⁽¹⁾based on the California Air Resources Board (ARB) and the Environmental Protection Agency (EPA) emission control standards.

The emission factors take into account several criteria that affect vehicular emissions: (1) emission control standards for light and heavy duty vehicles for each model year, (2) deterioration of emission control devices as a function of miles traveled, (3) the vehicle model-year mix at any given time, (4) the percentage of heavy duty vehicles (HDV, traffix mix) and (5) emissions as a function of average route speed. It is the consensus of the California ARB and the EPA that emission factors based on the ARB test procedure are realistic for the freeway operating mode, while emission factors based on the 1972 EPA procedures are realistic for the city-street operating mode.

The emission factors have been reviewed and approved by the California ARB and the EPA for use by the California Division of Highways in its air quality impact study. These factors are shown in Figures 1, 2, and 3. It must be emphasized, however, that they probably give slightly lower pollutant concentrations than would be expected in Virginia. This situation arises because California is about three years ahead of the federal standards for automobile pollution control devices. Therefore, in these analyses 1972 emission factors were used for the 1975 study, 1984 factors for the 1985 study, and 1995 factors for the 1995 study.

In the corridor analysis, the projected traffic mix for the proposed I-66 extension was approximately 8% HDV. The emission factors for the next higher percentage HDV, namely 10% HDV, were used. This usage would result in approximately 6% higher pollutant concentrations.

METEOROLOGICAL DATA

The proposed I-66 extension begins at the interchange on I-495 in Fairfax County, passes through Arlington County, and terminates near the Key Bridge. Since this general area is bounded on the west by the Dulles International Airport and on the east by the National Airport, the meteorological data observed for these airports would be ideal for use in the area. However, because of the inadequacy of the data for Dulles, only the National Airport data were used. Besides, it is felt that the National Airport data are representative of the area under construction. The hourly surface meteorological data for National Airport used in this analysis included the hour of the day, the day of the month, the year, the cloud cover, ceiling height, and wind direction and speed for the period from January 1952 to December 1961. Ten years' data were used in order to provide valid estimations of the air flow patterns in the study area.

The meteorological data were processed by a computer program whose output is a set of stability wind rose data which gives the relative frequency distributions of 16 wind directions, 9 wind speed classes, and 6 stability classes for different times and seasons.⁽²⁾ The stability wind rose data (Tables III — VII) were then used in a highway line source dispersion model (Appendix I) to estimate the pollutant concentration within the highway corridor for 1975 and 1990.

The National Airport meteorological data were obtained from the National Climatic Center of the National Oceanic and Atmospheric Administration, Asheville, North Carolina.

MATHE MATICAL ANALYSIS

In order to assess the impact of the Interstate 66 on the air quality of the affected area, the meso- and microscale analyses were made as described below.

Mesoscale Analysis

The mesoscale analysis involved estimations of the total carbon monoxide emission (Appendix II) of the existing and anticipated major roads in the area, with the assumptions that I-66 is not built and that I-66 is built. A comparison of such total emission would yield the effect of the proposed I-66 on the overall air quality of the area. By performing the analysis for the years 1975, 1985, and 1995, one can also estimate the general trend of these pollutant emissions.

The inputs for this analysis were DVMT estimates for each major road and the emission factors discussed earlier in the report.

The results of the analysis with and without the proposed I-66 are presented in Table VIII. The table shows that as the traffic on major roads decreases due to the operation of the proposed I-66 the emissions from these roads decrease correspondingly. The operation of I-66 will result in a reduction in the total CO emissions of 17% for 1975, 7.0% for 1985, and 7.5% for 1995. Figure 4 illustrates this reduction in CO emissions and shows the general trend of pollutant emissions from 1975 to 1995. The relatively large reductions in emissions (77% without I-66 and 74% with I-66) from 1975 to 1985 will be due to more effective emission controls in motor vehicles.

Table IX shows that from 1975 to 1985 there will be a 59% increase in the daily vehicle miles of travel in the area, even without the proposed I-66. However, instead of a corresponding increase in CO emissions, there will be a 73% decrease because of improved emission control devices. If I-66 is built as planned, the CO emissions will be reduced further to 75%. This reduction will result from the combined effects of better emission control devices and the operation of the proposed I-66. Since emission controls account for 73% of the reduction, the remaining 2% emission reduction must be credited to I-66.

Microscale Analysis

The microscale analysis produces an estimate of the CO pollutant levels (in ppm.) adjacent to the proposed roadway (at 50 ft., 100 ft., and 200 ft. from the edge of the pavement). The analysis was performed for the years 1975 to 1995. As time was very limited for this study, the analysis was carried out only for the winter months (December, January, and February); however, since the worst meteorological conditions and therefore the highest pollutant levels occur during the winter (see Tables III and IV), this limited analysis provides a valid estimate of the impact of the proposed facility.

Nine sites were chosen as representative of the corridor area. Figures 5 and 6 show the prevailing and worst CO concentrations, respectively, along site No. 1. The prevailing and worst conditions for all sites are shown in Tables X - XV. Note that in some instances the predicted worst case is a lower level than the prevailing case. This implies that because of local conditions (see Appendix I) the theoretically worst case was not as dangerous as others. As explained in Appendix I, all such occurrences are easily understood and it can be shown that in such instances it is wise to select the prevailing case as also being the worst case.

The extremes for the corridor analyses are summarized in Table XVI. As can be seen from this table, the low values are well within the federal standards of 35 ppm. averaged over an hour period. Note that the highest values, although at first alarming, have a very low probability of occurrence (around 1-2%) and will last no longer than one hour, thus they will still fall within the federal standards. (California allows the occurrence of a one-hour peak up to 40 ppm. — and I-66 would be well within this standard.)

In summary, the results of this analysis are very encouraging. The values are generally low (recall that the winter months are the most adverse) and the highest values have a very minimal chance of occurrence. Finally, the 1995 predictions show that the highway will have a minimal effect on the environment.

REFERENCES

- 1. Ranzieri, A. J., et al., "Motor Vehicle Emission Factors for Estimates of Highway Impact on Air Quality," California Division of Highways, <u>Research Report No. M & R</u> 657082S-2, February 1972.
- 2. Environmental Protection Agency, Air Pollution Meteorology, January 1971.
- 3. Environmental Protection Agency, Federal Register, Vol. 36, No. 84, April 30, 1971.
- 4. Ranzieri, A. J., et al., "Meteorology and Its Influence on the Dispersion of Pollutants from Highway Line Source," California Division of Highways, <u>Research Report No. M & R</u> 657082S-3, March 1972.

1.23

APPENDIX I

MICROSCALE ANALYSIS

The microscale analysis is divided into two categories by meteorological type; i.e., the prevailing and worst-cases. The worst case, is taken as the light wind condition (4-7 mph) where the winds are parallel to the highway alignment, in which case an accumulation or build-up effect is observed.

The method used to predict the prevailing nonparallel effect of the roadway is developed in full detail in Reference 4. For the parallel analysis, the Virgina Highway Research Council has developed its own mathematical approach based on the generally accepted Gaussian dispersion model for gaseous-pollutants. The California model was not used for the parallel analysis since preliminary data from California indicated that their parallel model may overestimate by a factor of as much as 1,000%. There is also evidence that the California nonparallel model occasionally overestimates by as much as 400%; however, since it generally gives accurate results (an occasional overestimation is perhaps more in the public interest than an underestimation) it was used.

Since the report is not intended as a forum for scientific or mathematical analyses, the Virginia Highway Research Council's parallel model will not be further pursued. However, a complete mathematical presentation is available.

As mentioned in the body of this report, there are some instances where the parallel case does not yield the higher pollutant concentrations. In these instances, it can be seen that one of several factors has an effect:

- 1. Pollutants are "trapped" in a cut in the parallel case thus increasing concentrations within the cut, but simultaneously decreasing concentrations outside the cut.
- 2. Winds parallel to a cut or fill prevent the occurrence of aerodynamic eddies near the edges of the protruding level masses and therefore, actually cause a reduction in local pollutant concentrations.
- 3. The roadway may be located near one edge of a large valley (with the observer located at the top of that edge), in which case winds blowing across the valley will pile the pollutants up near the observer while winds parallel to the valley would "sweep" the pollutants from the hillside.

Again, the theoretical aspects of the gaseous dispersion model have not been detailed; however, detailed descriptions of the analyses can be made available upon request.

1124

APPENDIX II

MESOSCALE ANALYSIS

The mesoscale analysis evaluates the overall effect of a proposed highway on the air quality of its environment. A comparison is made of the total emissions with and without the new highway. This comparison indicates the increase or decrease in pollutant emissions that the new facility precipitates by changes in local traffic patterns.

In the analysis the following information is needed:

- 1. Daily vehicle miles traveled for freeways and local streets both with and without the proposed facility.
- 2. Average daily route speeds for freeways and local streets.
- 3. Emission factors for CO as a function of average route speed.

The pollutant emission (tons per day) from each road is estimated from the equation:

Tons per day = E.F. X DVMT $\times 1.10 \times 10^{-6}$

where E.F. = emission factor in grams/mile DVMT = daily vehicle miles traveled

The summation of the emissions from the individual roads yields the total pollutant emission for the affected area.

	ceeds (MPH)	1995 (off peak)	Same as 1985																			
	Average Operating Speeds (MPH)	1985 (off peak) 19	30 Sa	45	40	45	30	25	35	40	35	30	20	35	25	30	20	40	35	30	25	20
	% Trucks for	1985 & 1995 ADT	3%	3%	3%	4%	4%	3%	3%	3%	2%	2%	2%	4%	3-4%	2%	2%	%0	0%	3%	3%	3%
	out I-66	1995	1,081,430	376,600	83,110	114,980	210,610	222,710	43,820	33,520	261,130	77, 860	4,260	177,910	237,850	226,360	22,740	478,240	56,480	66,270	100,730	168, 630
ATA	DVMT without I-66	1985	730, 690	254,460	56,150	77,680	142,310	150,480	29,610	22,650	176,430	65,958	2,880	120,200	160,700	152,660	15,360	323,140	38,160	44,780	68,070	114,000
TRA FFIC DATA	DVMT with I-66	1995	693, 690	285, 360	73, 700	53,480	106,620	64,300	35,240	23,650	141,790	47,570	3,090	126,410	127,690	187,420	21,960	281,650	41,426	37,050	60,080	116,260
	DVMT	1985	468, 720	192,810	49,790	36,140	72,040	43,450	23, 810	15,980	95,800	32,150	2,090	85,410	86,270	126,640	14,840	190,300	27,990	25,030	40,600	1 78,550
	I onath	neißtu	7.13 mi.	2.68	0.53	1.33	2.37	2.96	0.93	0.83	3.50	1.77	0.07	2.90	3.23	3.03	0.13	4.77	0.67	1.27	2.06	2.17
	Ę	TO	Glebe Road	S. Lynn St.	Roosevelt Br.	Rte. 123	Rte. 66	Rte. 50	Rte. 495	Dulles Access	Rte. 193	Glebe Road	D.C. Line	Rte. 338	Rte. 120	Lynn St.	Key Bridge	Rte. 29 & 211	Rte. 66	Four Mile Run	10th Street	Rte. 50
	CHON	FLOID	Rte. 650	Glebe Road	S. Lynn St.	Dulles Access	Rte. 123	Rte. 66	Rte. 7	Rte. 495	Dulles Access	Rte. 193	Glebe Road	Rte. 650	Rte. 338	Rte. 120	Lynn St.	. Rte. 123	Rte. 29 & 211	Rte. 50	Four Mile Run	10th Street
		annou	Route 50			Route 7			Route 123		-8	3-		Route 29 & 211				G. W. Mem. Pkwy, Rte. 123		Wilson Blvd.		

TRAFFIC DATA

1125

•

÷

Traffic Data Table I (Continued)

*

-	ſ	Ē	T anoth	DVMT	DVMT with I-66	DVMT w	DVMT without I-66	% Trucks for	Average Operating Speeds (MPH)	ng Speeds (MPH)
Route	From	Io	Lengtn	1985	1995	1985	1995	1985 & 1995 ADT	1985 (off peak)	1995 (off peak)
Route 120	6th St.	Wash. Blvd.	1.90 mi.	31,050	45,970	61,940	91,690	3%	30	Same as 1985
	Wash. Blvd.	Rte. 29 & 211	1.00	17,490	25, 880	27,560	40,800	3%	35	
	Rte. 29 & 211	Rte. 123	3.07	84,580	125,160	87,650	129,710	3%	25	
Route 338	Rte. 29 & 211	Rte. 7 & 50	1.20	18,920	28,010	22,700	33,600	3%	30	
Ft. Myer Dr. & N. Lynn St.	Rte. 50	Rte. 29 & 211	1.00	76,300	112,920	80,310	118,860	3%	25	
Four Mile Run	Rte. 66	Rte. 50	1.27	79,620	117,840	13,260	19,630	3%	35	
د لح Fairfax Drive	Rte. 66	Arlington Blvd.	1.92	59, 61.0	88, 600	57,300	84,800	3%	30	
Wash. Blvd.	Lee Hwy.	Wilson Blvd.	3.37	95, 060	140,690	125,660	185,970	5%	25	
Dulles Access BdJ Leesburg Pk.	Leesburg Pk.	Rte. 123	2.34	201,630	298,420	109,310	161,790	2%	60	
	Rte. 123	Rte. 66	2.03	133,110	196,990	13,840	49,950	2%	55	
Route 124	Rte. 29 & 211	G. W. Pkwy.	0.87	30,020	44,440	33, 080	48,950	0%	40	
Route 495	Gallows Rd.	Rte. 193	7.15	409,110	684,900	607,010	898,320	6-9%	65	
Route 66	Rte. 243	Rte. 495	2.40	251,420	372,120	157,680	233, 380	5%	65	
	Rte. 495	Lee Hwy.	7.68	801,990	1,186,960			4%	60	
	Lee Hwv.	Ft. Myer Dr.	1.47	85,360	126,340			4%	50	
	Et Marca Da	D C Tine	0 77	77 750	03 600	010 01	64 160	AG.	50	

÷

1126

TABLE II

۰.

•

×

TRAFFIC DATA FOR INTERSTATE 66

			1985	1985 & 1995 Peak Hour VPH, W/and W/O I-66	Hour VPH	, W/and W/	<u>0 I-66</u>	1985 &	1985 & 1995 Off Peak VDH W/and W/O Lee	ак Ирн и	1 O/ M pue/ A	33		
Route	From	To	1985	1985	1995	1995	% of	1985	1985	1 995	1 1 0 0F	0 26	AVE. UP	AVE. Uper. Speed
			W/ I-66	W/O 1-66	W/ 1-66	W/O 1-66	Twinches	00 1 / IX	00 1 0/ 111		0007	10 0	3	282
					200 T /m	00-T O/M	TINCKS	w/ I-00	W/U 1-66	W/1-66	W/O I-66	Tucks	Peak	Off Peak
Route 66	Rte. 243	Rte. 495	10,480	6,570	15.500	9.720	2.3	5.240	980	7 750	0.0	(1		
_	Rte. 495	Leesburg Pk	8 040		11 000		i	22.0	0.700	001	4,000	۵.č	40 MPH	40 MPH 65 MPH
	I aachumr Dh	Dullor Access			100 111		Z. U	4,020		5,950		5.0	40	60
	Treesont & LV.	Duttes Access	9,170		13,570		2.0	4,580		6.780		c ư	04	60
1	Dulles Access	Westmoreland Rd 12,660	12,660		18,740		2.0	6.330		0.970		5	0#	00
	Westmoreland Rd Wash. St.	Wash. St.	11,570		17,120		2.0	5.780		0 5 5 0		0.0	40	60
	Wash. St.	Sycamore	12.860		19,040		0 6	0010		0000		0.0	40	60
	Svcamore	Datrick Honny	14 100					0,430		9,520		5.0	40	60
		T dut ICN HEIILY	14°T		20,870		2.0	7,050		10,430		5.0	40	60
	Patrick Henry	Fairfax Dr.	11,230		16,610		2.0	5.610		006 8		5		00
	Fairfax Dr.	N. Glebe	7.190		10.650		0	0 5 0 0				۰. ⁰	40	60
-	N. Glebe	Lee Hurv	8 51 0		000 01		3	020 6		0,320		5.0	40	60
_	Teo Hun	Concret Dura Manual	00000		066 7T		Z. U	4,250		6,290		5.0	40	60
_	Lee IIMy.	Shout nut Pkwy.	8, 330		12,330		2.0	4,160		6,260		5.0	40	50
	Spout Run Pkwy. Lee Hwy.	Lee Hwy.	5,760		8,520		2.0	2,880		4.260			T	
	Lee Hwy.	Ft. Myer	4,200		6,220		2.0	2.100		3 110			T	00
	Ft. Myer	Roosevelt Br.	9,440	4,860	13,970	7.190	2.0	4.720	9 430	01140	0 5 0 0	4.0		90
	Roosevelt Br.	D. C. Line	14.510	10.780		15 960	0 0	7 95.0	000	002 0	080 0	4.0		50
						10000	2.2	0.02	0,330		7,980	4	50	50

1127

•

t

÷

TABLE III

RELATIVE FREQUENCY DISTRIBUTION OF STABILITY CLASSES IN WINTER MONTHS

Winter: (December, January, February)	Stability Class	7 Deletine Dresser
Hours (7, 8, 9)	Stability Class A	<u>% Relative Frequency</u> 0.4062
	В	3.9513
	С	7.2378
	D	60.9675
	${f E}$	13.3678
	F	14.0694
Hours (11, 12, 13)	А	0.4799
	В	7.5305
	С	19.3060
	D	72.6836
	Ε	0
	F	0
Hours (16, 17, 18)	A	0.2216
	В	2.0679
	С	4.9852
	D	62.2230
	Ε	17.3929
	F	13.1093

TABLE IV

RELATIVE FREQUENCY DISTRIBUTION OF STABILITY CLASSES IN SUMMER MONTHS

Summer: (June, July, August)	Stability Class	(7 Deletion December of
Hours (6, 7, *)	Stability Class A	<u>% Relative Frequency</u> 19.0217
	В	23.5145
	С	18.1884
	D	25.0000
	E	6.1232
	F	8.1522
Hours (10, 11, 12)	А	12.7536
	В	29.6014
	С	35.4710
	D	22.1739
	E	0
	F	0
Hours (15, 16, 17)	A	8.8768
	В	30.6159
	С	41.9927
	D	18.5145
-	E	0
	F	0

.

PREVAILING STABILITY WIND ROSE DATA FOR MORNING PEAK HOURS IN WINTER MONTHS

TABLE V

WEATHER STATION NO.13743 NAME: VIRGINIA MAGNETIC TAPE NO. 040000 PERIDD OF RECORD: 1/52 TO 12/61 PROJECT DESCRIPTION: 1-66 NORTHERN VIRGINIA AIR STUDIES SOURCE: 19701 CHARGE: 19701 EA: 762561 LCC: E40SL IN THE FOLLOWING TABLE THE CALMS ARE DISTRIBUTED

THE EDITONING TABLE IS EDD .

		THE		FOLLOWING 1	TABLE I	IS FOR Mr	R : MONTHS D	OF IAN	u			COMBINED
						Ξ			-	ີ່	9 COM 200	COMBINED
						S	STABILITY	ry class	SS D			
	#	****	****	FREQUENCY		DISTRIBUTION	F# NOII	*****	***			
DIRECTION	NO		S	SPEED, MPH	T							
	0-3	4-7		2 13-18	19-24	25-31	32-38	39-46	47	TOT	AVE	M
z	2	10			10	2	0	0	0	92	12.6	5.6
NNE	Ś	17			2	0	0	0	0	92	11.8	5.6
ЪР	ŝ	15			4	0	0	0	0	115	11.1	7.0
ENE	9	35		15	-	0	0	0	0	111	8.9	6.7
ш	7	14	ę		0	0	0	0	0	30	6.3	1.8
ESE	-	1	Ð		0	0	0	0	0	27	7.4	1.6
SE	9	60	0		0	0	0	0	0	23	6•3	1.4
SSE		21	18				0	0	0	44	8.5	2.7
S	6	43	59		m	0	0	0	0	143	9 ° 2	8.6
SSW	m	(43)	(12)	(20)	œ	0	0	0	0	174	10.9	(10.5)
NS	10	14	24		7		0	0	0	64	9•5	3.9
MOM		19	17			0	0	0	0	45	8.8	2.7
3	80	80	15		5	1	0	0	0	55	11.4	3.4
ANA	1	16	31		32	10	F	0	0	201	15.7	(12.1)
32	4	16	56		43	16	-1	0	0	235	15.3	(14.2)
MNN	80	16	46		25	\$	0	0	0	202	14.1	(12.2)
CALM	38	0	0		0	0	0	0	0	38	0.0	0•0
101	81	312	524	554	142	37	4	0	0	1655	0.0	0•0

1130

ć

TABLE VI

PREVAILING STABILITY WIND ROSE DATA FOR NOON OFF-PEAK HOURS IN WINTER MONTHS

WEATHER STATION NO.13743 NAME: VIRGINIA MAGNETIC TAPE NO. 040000 PERIOD OF RECORD: 1/52 TO 12/61 PROJECT DESCRIPTION: 1-66 NORTHERN VIRGINIA AIR STUDIES SOURCE: 19701 CHARGE: 19701 EA: 762561 LCC: E40SL THE FOLLOWING TABLE THE CALMS ARE DISTRIBUTED I N

TABLE VII

PREVAILING STABILITY WIND ROSE DATA FOR EVENING PEAK HOURS IN WINTER MONTHS ATHER STATION NO.13743 NAME: VIDGINIA

WEATHER STATION NO.13743 NAME: VIRGINIA MAGNETIC TAPE NO. 040000 PERIOD OF RECORD: 1/52 TO 12/61 PROJECT DESCRIPTION: 1-66 NORTHERN VIRGINIA AIR STUDIES SOURCE: 19701 CHARGE: 19701 EA: 762561 LCC: E40SL IN THE FOLLOWING TABLE THE CALMS ARE DISTRIBUTED

THE FOLLOWING TABLE IS FOR :

			-	OLLOWING .			•					
						Å	MONTHS 0	OF JAN		FE8	DEC C	COMBINED
						H	JURS	16				COMBINED
						S	STABILIT	TY CLASS		~		
	¥	****	****	FREQUENCY		DISTRIBUTION	** NOI.	*****	***			
DIRECTI	LON		Ś	SPEED, MPH								
	0-3	4-7	1 8-12	2 13-18	19-24	25-31	32-38	39-46	47	101	AVE	54
Z	ŝ	80	23	45	10		0	0	0	92	13.3	5.5
NNE	4	∞	31	22	ŝ	0	0	0	0	70	11.5	4.1
ШN	'n	10	24	32	ŝ		0	0	0	75	12.4	4.5
ENE	4	18	35	28	4	ŝ	1	0	-	16	11.9	5.7
Ē	0	80	15	n	0	0	0	0	0	26	9.3	1.5
ESE	m	σ	26	9	0	0	0	0	0	44	9.2	2.6
SE	2	5	.1 8	12	2	0	0	0	0	40	11.2	2.3
SSE	\$	15	41	11	2	2	0	0	0	78	6*6	4.6
S	ŝ	(66)	(80)	(20)	5	2	0	0	0	181	10.8	(10.8)
SSW	4	12	19	55	11	2	0	0	0	145	12.6	8.6
SW	9	12	11	6	4	ŝ	0	0	0	45	10.9	2.7
NON	-4	Ś	2	7	-	0	0	0	0	21	10.8	1.3
3		ŝ	4	20	6	1		0	0	41	15.4	2.5
323	0	ŝ	37	(162)	(15)	18	-1	1	0	297	17.1	(17.6)
32	n	Q	46	(138)	54	15	2	0	0	265	16.2	(15.7)
MNN	0	æ	21	107	2.8	4	0	0	0	168	15.7	9.9
CALM	17	0	0	0	0	0	0	0	0	17	0-0	0•0
101	51	171	480	707	215	54	ŝ		اسب	1685	0.0	0.0

TABLE VIII

.

Area
Affected
in the
Roads iı
Major
for
Emissions
Monoxide
Carbon
Estimated

F		DMVT W/O 1-66	1-66	I	DMVT W/ I-66	6	CO (tone	CO (tons/day) W/O I-66	'O I-66	CO (ton	CO (tons/day W-I-66	I-66
Houre	1975	1985	1995	1975	1985	1995	1975	1985	1995	1975	1985	1995
50	999 , 648	1,041,300	1,541,140	682, 865	711,320	1,052,750	47.60	9.57	11.87	32.13	6.52	8.11
7	226,049	235,470	548, 300	145,563	151,630	224,400	10.75	3.43	4.22	7.38	1.40	1.73
123	285,624	297,528	420,590	163, 034	169,830	251,340	13.49	2.73	3.24	7.68	1.55	1.94
29 & 211	430,962	448,920	664, 860	300, 633	313,160	403,480	23.31	4.20	5.12	16.12	2.93	3.57
Wash. Mem. Pkwy. 346, 847	346,847	361,300	534,720	209,550	218,290	323,076	14.32	3.23	4.12	8.68	1.96	2.49
Wilson Blvd.	217,775	226,850	335, 630	138,320	144,180	213,390	14.12	2.18	2.58	9.07	1.38	1.64
120	170.063	177,150	262,200	127,905	133,120	197,010	9.38	1.66	2.02	7.24	1.24	1.52
338	21, 792	22,700	33,600	18,170	18,920	28,010	1.13	0.21	0.26	0.94	0.18	0.22
t. Mver Drive	77,097	80,310	118,860	73,200	76,300	112,920	4.66	0.76	0.92	4.43	0.72	0.87
Four Mile Drive	12,729	13,260	19,630	76,500	79,620	117,840	0.59	0.12	0.15	3.53	0.73	0.91
airfax Drive	55,008	57,300	84,800	57,200	59,610	88,600	2.84	0.54	0.65	2.96	0.56	0.68
/ashington Blvd.	120,633	125,660	185,970	91,200	95,060	140,690	7.30	1.19	1.43	5.52	0.93	1.08
-495	582,729	607,010	898, 320	392,746	409,110	684,900	14.74	5.81	6.92	9.94	3.92	5.27
124	31,756	33,080	48,950	28,819	30,020	44,440	1.29	0.29	0.38	1.17	0.27	0.34
-66	286.108	298,030		1,167,864	1,216,520	1,779,020	7.24	2.29	1.70	25.24	9.36	10.18
Julles Access		123,150	182,270		334, 741	495,410		0.95	1.04		2.82	2.83
					Total CO Emissions	issions	171.76	39.16	46.90	142.04	36.44	43.38
				% Reduct	ion in Total (% Reduction in Total CO Emissions due to 1-66	due to I-6	9		17%	7.0%	7.5%

1133

•

•

TABLE IX

EFFECTS OF EMISSION CONTROL STANDARDS AND I-66 ON CARBON MONOXIDE EMISSIONS

Total DVMT W/O I-66, 19	75	3,578,712 miles
19	95	5,697,570 miles
% Total DVMT increase from 19	75	
to 1995		59%
% CO emission reduction from	W/O I-66	73%
1975 – 1995	W/ I-66	75%

4

TABLE X

ESTIMATED CO CONCENTRATION RANGES AT SOME SITES ON 1-66 CORRIDOR

	Feb.
	Jan.
1975	Dec.,
Year:	Month:

Hours: 7, 8, 9 Predominant Stability : Class D	at 100 ft at 200 ft	15 5-7	3-5	6-13	4						
y : Class	at 100 ft	15			2-4	3-6	1-3	4-6	0-1	0-1	
1 1 2		8-15	5-8	11-19	3-6	5-9	3-5	9-15	2-4	2-3	
, 8, 9 nant Stabil	ppm. tor worst Conditions ability at 50 ft at 100 ft	9-20	6-11	13-23	4-6	6-11	4-6	13-22	5-8 2	3-6	
Hours: 7, 8, 9 Predominant St	ppm. to %Probability	1	2	1	1	1	1	2	1	3	
Feb.	itions at 200 ft	2-3	2-3	8-11	2-3	6-7	2-3	2-3	3	1	-
75 c., Jan.,	bable Cond at 100 ft	3-4	3-4	9-13	2-3	8-11	e	2-3	3-4	1-2	
Year: 1975 Month: Dec., Jan., Feb.	ppm. for Most Probable Conditions obability at 50 ft at 100 ft at 2	6-8	6-8	19-26	2-3	9-13	3-4	3-4	6-8	2-3	1
	ppm. for % Probability	14	14	14	14	14	14	14	14	14	-
	Description	Barbour Street	Virginia Lane	Greenwich St. & Haycock Rd.	Wyoming St. (by 29th St.)	McKinley Road	George Mason Dr. & Edison Street	Taylor Road	Near Potomac Tower Apt.	N. Quinn Street	
	Site No.	1	5	e	4	പ	y	2	10	11	

-18-

•

1135

.

TABLE XI

ų

ESTIMATED CO CONCENTRATION RANGES AT SOME SITES ON I-66 CORRIDOR

Year: 1995 Month: Dec., Jan., Feb.

Hours: 7, 8, 9 Predominant Stability: Class D

Cito No	Docominition	ppm. f	ppm. for Most Probable Conditons	bable Conc	litons	dd	ppm. for Worst Conditions	Conditions		
ONT ATTO	nescription	% Probability	y at 50 fl	at 100 ft	t at 200	% Probability	ility at 50 ft	at 100 f	at 200 ft	
1	Barbour Street	14	2-3	1-2		1	4-8	3-6	2-3	L
ຄາ	Virginia Lane	14	N	-	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2-4	2-3	1-2	I
3	Greenwich St. & Haycock Rd.	14	7-10	3-5	3-4	1	5-9	4-7	2-4	.
4	Wyoming St. (by 29th St.)	14	1	1	1	1	1-2	1-2	1-1	
5	McKinley Road	14	3-5	3-4	3	1	2-4	2-4	1-2	
9	George Mason Dr. & Edison Street	14	1-2	1-1	1	1	1-3	1-2	1	
7	Taylor Road	14	1-2	1	1	5	5-9	3-6	1-2	·
10	Near Potomac Tower Apt.	14	2-3	1-2	1	1	2-3	1-2	0	•
11	N. Quinn Street	14	1	1-0	0	3	1-2	1	0	•

1136

-19-

TABLE XII

ESTIMATED CO CONCENTRATION RANGES AT SOME SITES ON 1-66 CORRIDOR

-20-

1137

į

TABLE XIII

ESTIMATED CO CONCENTRATION RAMES AT SOME SITES ON I-66 CORRIDOR

Hours: 11, 12, 13 Predominant Stability: Class D	ppm. for Worst Conditions	% Pro	1 3-5 2-3 1-2	1 1-2 1-2 1	1 3-5 2-4 1-2	1 1 1 0-1	1 1-2 1-2 1	1 1 1 0-1	1 2-4 2-3 1	1 1-2 0-2 0	1 1 0-1 0
Hours:] Predomi	su	at 200 ft % Pro	0	0	8	0-1	1-2	1	-1	0	0
lan., Feb.	ble Condition	at 100 ft a	0	0	2-3	0-1	2	1	1	0-1	0
Year: 1995 Month: Dec.,Jan., Feb.	ppm. for Most Probable Conditions	at 50 ft a	П	1	4-5	0-1	2-3	1	1	1	0
ν	ppm. for	% Probability	17	17	17	17	17	17	17	. 17	17
	Description	mondi tocoo	Barbour Street	Virginia Lane	Greenwich St. & Haycock Rd.	Wyoming St. (by 29th St.)	McKinley Road	George Mason Dr. & Edison Street	Taylor Road	Near Potomac Tower Ap.	N. Quinn St.
	Site No.		1	73	ñ	-4	2 L	9	7	10	11

-21-

1138

TABLE XIV

ESTIMATED CO CONCENTRATION RANGES AT SOME SITES ON 1-66 CORRIDOR

Year: 1975 Month: Dec.,Jan., Feb.

Hours: 16, 17, 18 Predominant Stability: Class D

Site No.	Description	ppm. for	S.	ble Condite	suc	.mqq	or Worst Co		
		% Probability	at 50 ft	at 100 ft	at 200 ft	% Probability	at 50 ft	at 100 ft a	at 200 ft
-1	Barbour Street	18	6-8	3-4	2-3	1	14-24	10-18	5-9
5	Virginia Lane	18	6-8	3-4	2-3	1	6-11	5-8	3-5
3	Greenwich St. & Haycock Road	18	5-7	4-5	2-3	1	13-23	11-19	6-11
4	Wyoming St. (by 29th St.)	18	2	1-2	1	1	4-6	3-6	2-4
ى ئ	McKinley Road	18	2-3	2-3	1-2	1	6-11	5-9	3-6
9	George Mason Dr. & Edison Street	18	4-5	3~5	3-4	1	4-6	3-5	1-3
7	Taylor Road	18	4-5	3-4	3	1	13-22	9-15	4-6
10	Near Potomac Tower Apt.	18	11-15	507	4-6	1	5-8	2-4	0-1
11	N. Quinn Street	18	3-4	2-2	1-2	2	3-6	2-3	0-1

÷

1139

-22-

TABLE XV

ESTIMATED CO CONCENTRATION RANGES AT SOME SITES ON 1-66 CORRIDOR

Predominant St
Feb.
Dec., Jan.
Month:

/: Class D	
Hours: 16, 17, 18 Predominant Stability:	
n., Feb.	

Cito Mo		ppm. for	ppm. for Most Probable Conditons	ble Condit	suc	uidd	ppm. for Worst Conditions	nditions	
Slue No.	Description	% Probability	at 50 ft	at 100 ft	at 200 ft	% Probability	ity at 50 ft	at 100 ft	4t 200 ft
1	Barbour Street	18	2-3	1-2	1	T	5-9	4-7	2-3
8	Virginia Lane	18	2-3	1	I	T	2-4	2-3	1-2
3	Greenwich St. & Haycock Rd.	18	2-3	2	1	1	5-9	4-7	2-4
4	Wyoming St. (by 29th St.)	18	0-1	0-1	0	I	1-2	1-2	1
5	McKinley Road	18	1	1	1- 0	T	2-4	2-4	1-3
9	George Mason Drive & Edison Street	18	62	1-2	1-2	1	1-3	1-2	1
7	Taylor Road	18	0	1-2	1	I	5-9	3-6	1-2
10	Near Potomac Tower Apt.	18	4-6	2-3	2	1	2-3	1-2	0
11	N. Quinn Street	18	1-2	1	1-0	I	1-2	T	0

1140

-23-

TABLE XVI

CORRIDOR ANALYSIS EXTREMES

Distance (ft)	Morning Peak(ppm)	Distance (ft) Morning Peak(ppm) Noon off Peak(ppm) Evening Peak(ppm) Morning Peak(ppm) Noon off Peak(ppm) Evening Peak(ppm)	<u>Evening Peak(ppm)</u>	Morning Peak(ppm)	1995 Noon off Peak(ppm)	Evening Peak(ppm)
	Lowest-Highest	Lowest-Highest Lowest-Highest Lowest-Highest Lowest-Highest Lowest-Highest	Lowest-Highest	Lowest-Highest	Lowest-Highest	Lowest-Highest
50	3 - 26	1 - 10	2 - 24	1 - 10	0 - 5	1 - 9
100	2 - 19	1 - 7	2 - 19	1 - 7	0 - 4	1 - 7
200	1 - 11	1 - 4	1 - 11	0 - 4	0 - 2	0 - 4

-24-

.

•

1141

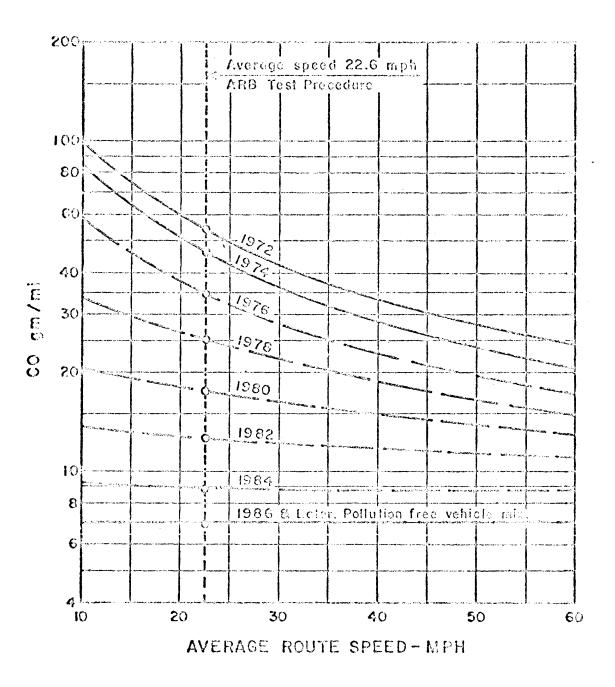


Figure 1: Emission factors for carbon monoxide vs. average route speed on freeways 10% HDV

1143

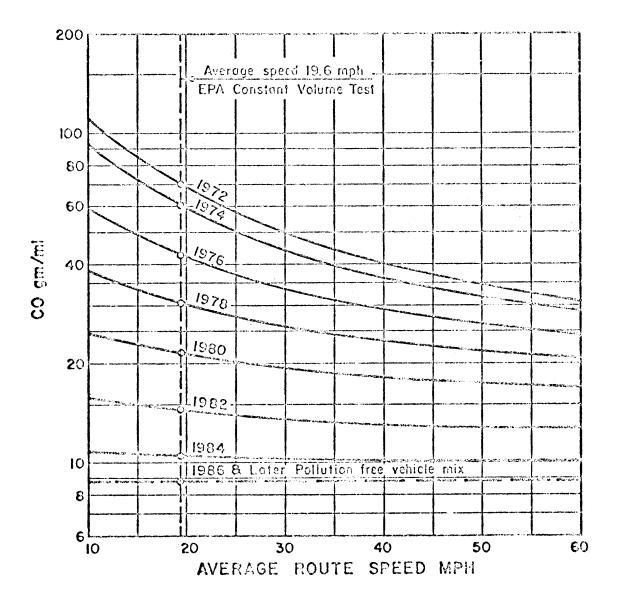
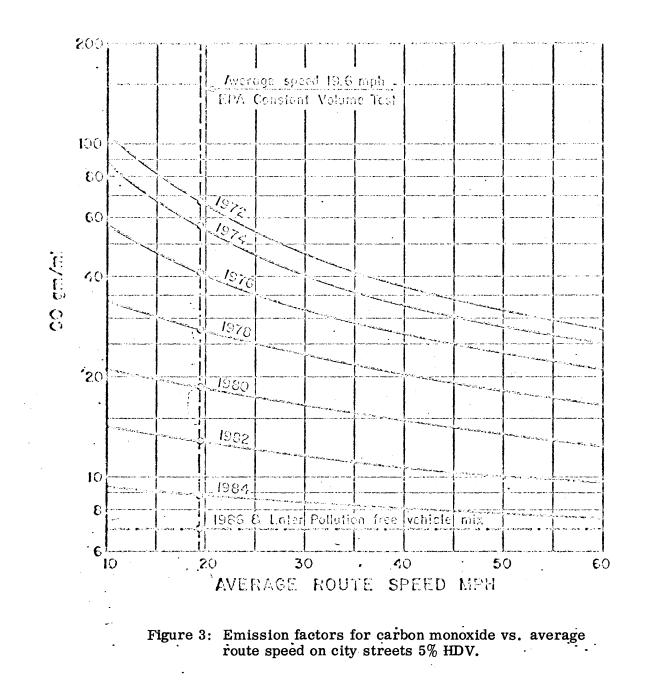



Figure 2: Emission factors for carbon monoxide vs. average route speed on city streets 10% HDV

1_45

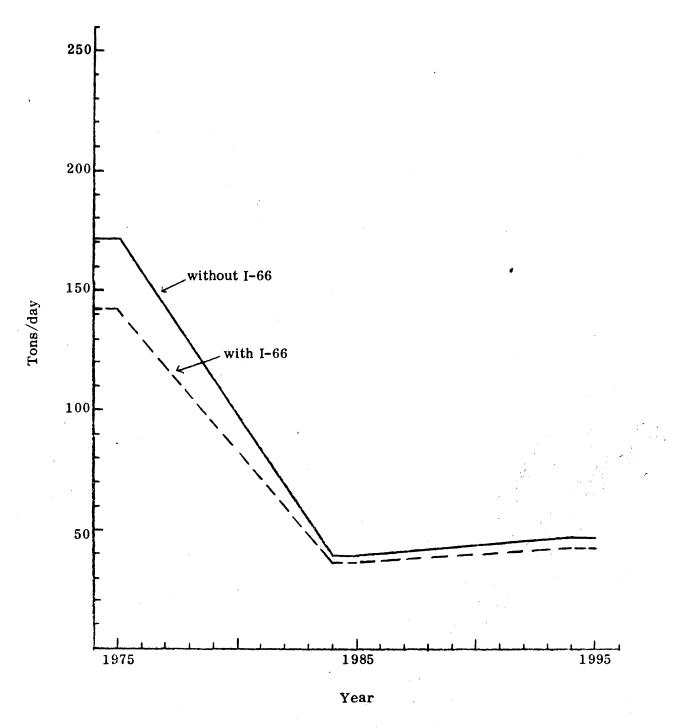


Figure 4. Estimated total carbon monoxide emissions in the area to be affected by the proposed I-66.

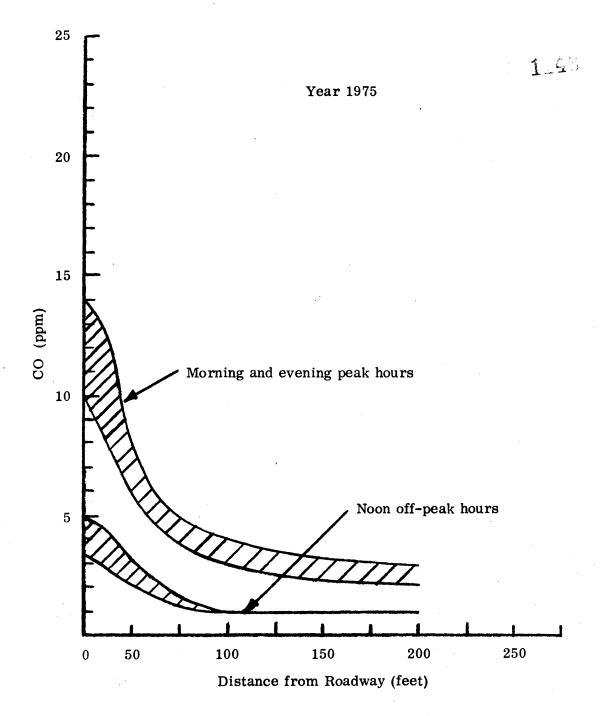


Figure 5. Most probable CO distribution at Site #1.

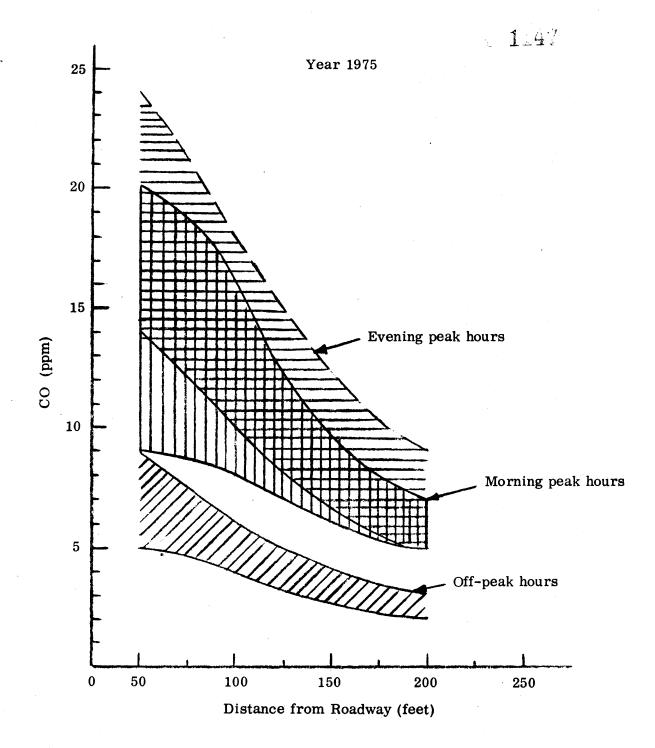


Figure 6. Worst possible CO distributions at Site #1.